Abstract
AbstractProtease activities in preparations from the plant-parasitic nematodes Heterodera glycines and Meloidogyneincognita and the free-living nematode Panagrellus redivivus were inhibited by exposure to a series of eight catechin polyphenol analogues, (+)-catechin, ( − )-epicatechin (EC), ( − )-gallocatechin (GC), ( − )-epigallocatechin (EGC), ( − )-catechin gallate (CG), ( − )-gallocatechin gallate (GCG), ( − )-epicatechin gallate (ECG) and ( − )-epigallocatechin gallate (EGCG) (1 mm each), and by a preparation from H. glycines cysts. General protease activity detected with the FRET-peptide substrate QXL520-KSAYMRF-K(5-FAM)a and proteasome chymotrypsin-like (CTL) activity detected with succinyl-LLVY-AMC were each inhibited significantly more (P< 0.05) by the gallated form of the polyphenol than by the corresponding non-gallated form. Species differences in response to inhibition across all analogues were revealed with the CTL substrate, but CG was a consistently potent inhibitor across all three species and with each substrate. A heat-stable component (CE) from H. glycines cysts inhibited M. incognita CTL activity by 92.07 ± 0.68%, significantly less (P< 0.05) in H. glycines (52.86 ± 2.77%), and by only 17.24 ± 0.55% (P< 0.05) in P. redivivus preparations. CTL activity was, however, inhibited more than 60% in all preparations by the proteasome-specific inhibitor MG-132. Hatching of M. incognita infective juveniles exposed to 1 mm CG, ECG, GCG or EGCG was reduced by 83.88 ± 4.26%, 69.98 ± 9.14%, 94.93 ± 1.71% and 87.93 ± 2.89%, respectively, while hatching of H. glycines was reduced less than 25% by each analogue. CE had no effect on nematode hatch, but did cause a 60% reduction in mobility of H. glycines infective juveniles exposed overnight to CE in vitro, which was more (P< 0.05) than the reduction of M. incognita infective juvenile mobility (20%).
Publisher
Cambridge University Press (CUP)
Subject
Animal Science and Zoology,General Medicine,Parasitology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献