Rehydration methods to recover cysticercoids of the rat tapeworm Hymenolepis diminuta from dry flour beetle carcasses

Author:

Chin H.M.-H.,Luong L.T.,Shostak A.W.

Abstract

AbstractTerrestrial arthropods host a variety of helminth parasites, yet quantifying the intensity of infection in these hosts post-mortem is challenging because carcasses may desiccate quickly. We recovered cysticercoids of Hymenolepis diminuta from desiccated flour beetle (Tribolium confusum) carcasses by modifying a published insect rehydration procedure. Without rehydration, carcasses dissected more than 1 day post-mortem had noticeable degradation of cysticercoids. Mild rehydration (soaking in water only for 2 days, or 0.5–10% KOH for 1 h followed by 1 day in water, or 0.5% KOH for 1 day) left carcasses tough and time-consuming to dissect, but all parasites could be recovered and were similar in body size to fresh cysticercoids. Moderate rehydration (5–10% KOH for 1 day) allowed all parasites to be recovered and facilitated dissection by partially dissolving internal organs of the beetle while causing little degradation of the cysticercoids. Harsh rehydration (5–10% KOH for 1 day followed by 5 days in water) not only dissolved internal beetle tissues but also severely damaged cysticercoids, such that parasite counts were unreliable. The degree of initial carcass desiccation had little effect on results following rehydration. However, regardless of treatment used, intact cercomers were rarely retained on rehydrated cysticercoids. Rehydration was less successful on early developmental stages of the parasite, which were recovered reliably only as they neared the cysticercoid stage. This method has utility for studies of parasite-induced mortality by permitting accurate and reliable parasite counts from dead, desiccated hosts.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3