Abstract
In order to work with non-Nagata rings which are Nagata “up-to-completely-decomposed-universal-homeomorphism,” specifically finite rank Hensel valuation rings, we introduce the notions of pseudo-integral closure, pseudo-normalization, and pseudo-Hensel valuation ring. We use this notion to give a shorter and more direct proof that $H_{\operatorname{cdh}}^{n}(X,F_{\operatorname{cdh}})=H_{l\operatorname{dh}}^{n}(X,F_{l\operatorname{dh}})$ for homotopy sheaves $F$ of modules over the $\mathbb{Z}_{(l)}$-linear motivic Eilenberg–Maclane spectrum. This comparison is an alternative to the first half of the author’s volume Astérisque 391 whose main theorem is a cdh-descent result for Voevodsky motives. The motivating new insight is really accepting that Voevodsky’s motivic cohomology (with $\mathbb{Z}[\frac{1}{p}]$-coefficients) is invariant not just for nilpotent thickenings, but for all universal homeomorphisms.
Publisher
Cambridge University Press (CUP)
Reference28 articles.
1. [Stacks] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2014.
2. Points in algebraic geometry
3. Crit�res de platitude et de projectivit�
4. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes;Grothendieck;Inst. Hautes Études Sci. Publ. Math.,1961
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Milnor excision for motivic spectra;Journal für die reine und angewandte Mathematik (Crelles Journal);2021-08-14
2. K-theory of valuation rings;Compositio Mathematica;2021-05-20
3. Cdh descent, cdarc descent, and Milnor excision;Mathematische Annalen;2020-09-23