Jetting onset on a liquid surface accelerated past a submerged cylinder

Author:

Martín Pardo RubertORCID,Barua Niloy,Lisak Daphné,Nedić JovanORCID

Abstract

A novel experiment is presented to study the initial disturbances on a free surface due to the constant acceleration of liquid around a submerged obstacle. The surface response to different obstacle sizes, initial surface heights and fluid velocities is measured using high-speed videography. Perturbations observed on the surface are classified into either jetting or gravity waves by measuring the steepness of growing liquid columns. A classification phase map between these two regimes is obtained and compared with analytical results by Martín Pardo and Nedić (2021). The agreement between decision boundaries is good for high Froude numbers (high fluid velocities) but deteriorates at lower velocities, where viscosity and surface tension effects (not considered in the analytical model) have a greater predominance. The surface profile and perturbation amplitude measured in experiments are also compared against this analytical model. In all cases, the model accurately predicts the corresponding experimental results at the beginning of the motion, but the prediction error increases with time. It is also observed that faster moving surfaces that lead to the onset of jetting have greater prediction accuracies and longer validity times of the predictions.

Publisher

Cambridge University Press (CUP)

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3