Experimental investigation of performance of high-shear atomizer with discrete radial-jet fuel nozzle: mean and dynamic characteristics

Author:

Kumar Sonu,Rathod Darshan D.,Basu SaptarshiORCID

Abstract

The present study focuses on the performance of a novel high-shear atomizer with a discrete radial-jet fuel nozzle to overcome the constraints associated with the simplex-pressure-swirl and duplex-fuel nozzles at the high-end power demand of a gas turbine combustor. The high-shear atomizer consists of multiple inner and outer radial swirlers with interchangeable flare and fuel nozzle. The performance of the atomizer with discrete radial-jet fuel nozzle is elucidated at ALR (mass ratio of air to liquid) 14.1 through variations in geometrical design parameters of the swirl cup. The parameters of interest are the split ratio (γ), relative swirl direction of inner and outer swirler (co- and counter-rotation), flare angle (θ) and flare mixing length (η). Spray characteristics at ALR 4.72, 7.08 and 9.44 are also presented for an atomizer by freezing the geometrical design. The particle image velocimetry diagnostic technique is employed to capture the spray flow field. The non-dimensional radial (W/Df; W, radial width of CTRZ (in mm) and Df, exit diameter of flare (mm)) and axial (L/Df) sizes of the central toroidal recirculation zone and near field swirl number (SN5) of the flow are explored. Further, variations in the droplet size distribution of the atomizer across all the ALR are discussed in detail. The Sauter mean diameter across all the test cases is found to be in the range of 9–30 μm, 15–37 μm, 15–50 μm and 23–75 μm at ALR 14.1, 9.44, 7.08 and 4.72 respectively, which shows good atomization capability of the atomizer with discrete jets. The spatial distribution of the spray volume/mass in an azimuthal plane is examined in the circumferential and radial directions, which shows consistent and excellent azimuthal symmetry of the spray even with a decrease in ALR value. The overall mean and dynamic spray characteristics of the atomizer suggest that high-shear atomizer in combination with a discrete radial-jet fuel nozzle would be a better candidate than an atomizer with a simplex pressure-swirl fuel nozzle in rich-quench-lean concept-based gas turbine combustors.

Publisher

Cambridge University Press (CUP)

Reference28 articles.

1. The role of fuel preparation in low emissions combustion;Lefebvre;Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. Houston, Texas, USA, 5–8 June, 1995, vol. 5,1995

2. A canonical geometry to study wall filming and atomization in pre-filming coaxial swirl injectors

3. The proper orthogonal decomposition in the analysis of turbulent flows the proper orthogonal decomposition in the analysis of turbulent;Lumley;Annual Review of Fluid Mechanics,2017

4. Swirl cup modeling. I

5. On the dynamics of sprays in complex gas turbine swirl injectors

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3