Step-induced transition in compressible high Reynolds number flow

Author:

Costantini MarcoORCID,Risius SteffenORCID,Klein ChristianORCID

Abstract

The effect of sharp forward-facing steps on boundary-layer transition is systematically investigated in this work in combination with the influence of variations in Mach number, Reynolds number and streamwise pressure gradient. Experiments have been conducted in a quasi-two-dimensional flow at Mach numbers up to 0.77 and chord Reynolds numbers up to 13 million in the Cryogenic Ludwieg-Tube Göttingen. The adopted experimental set-up allows an independent variation of the aforementioned parameters and enables a decoupling of their respective effects on the boundary-layer transition, which has been measured accurately and non-intrusively by means of a temperature-sensitive paint. The functional relations determined between a non-dimensional transition parameter and the non-dimensional step parameters allow the step effect on transition to be isolated from the influence of variations in Mach number, Reynolds number and pressure gradient. Criteria for acceptable heights of forward-facing steps on natural laminar flow surfaces for the examined test conditions are derived from the present functional relations. The measured transition locations are also correlated with the results of linear, local stability analysis for the smooth configuration, enabling the estimation of the step-induced increment of the amplification factor ΔN of Tollmien–Schlichting waves, which can be incorporated in the eN transition prediction method.

Publisher

Cambridge University Press (CUP)

Reference55 articles.

1. Perraud, J. , & Seraudie, A. (2000). Effects of steps and gaps on 2D and 3D transition. In E. Onate, et al. (Eds.), Proceedings of the ECCOMAS 2000. Barcelona, Spain: Technical University of Catalonia.

2. Surface-step effects on boundary-layer transition dominated by Tollmien-Schlichting instability;Crouch;AIAA Journal,2020

3. Unit Reynolds number, Mach number and pressure gradient effects on laminar-turbulent transition in two-dimensional boundary layers;Risius;Experiments in Fluids,2018

4. Numerical simulation of excrescence generated transition;Rizzetta;AIAA Journal,2014

5. Rosemann, H. (1997). The cryogenic Ludwieg-tube tunnel at Göttingen (AGARD R-812, pp. 8-1–8-13). Cologne, Gremany: AGARD.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3