TILING DIRECTED GRAPHS WITH TOURNAMENTS

Author:

CZYGRINOW ANDRZEJ,DEBIASIO LOUIS,MOLLA THEODORE,TREGLOWN ANDREW

Abstract

The Hajnal–Szemerédi theorem states that for any positive integer $r$ and any multiple $n$ of $r$, if $G$ is a graph on $n$ vertices and $\unicode[STIX]{x1D6FF}(G)\geqslant (1-1/r)n$, then $G$ can be partitioned into $n/r$ vertex-disjoint copies of the complete graph on $r$ vertices. We prove a very general analogue of this result for directed graphs: for any positive integer $r$ with $r\neq 3$ and any sufficiently large multiple $n$ of $r$, if $G$ is a directed graph on $n$ vertices and every vertex is incident to at least $2(1-1/r)n-1$ directed edges, then $G$ can be partitioned into $n/r$ vertex-disjoint subgraphs of size $r$ each of which contain every tournament on $r$ vertices (the case $r=3$ is different and was handled previously). In fact, this result is a consequence of a tiling result for standard multigraphs (that is multigraphs where there are at most two edges between any pair of vertices). A related Turán-type result is also proven.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference31 articles.

1. [23] T. Molla , ‘Tiling directed graphs with cycles and tournaments’, PhD Thesis, Arizona State University, Tempe, Arizona, 2013.

2. Proof of the Alon–Yuster conjecture

3. A multipartite Hajnal–Szemerédi theorem

4. Tiling Turán theorems;Komlós;Combinatorica,2000

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dirac-type results for tilings and coverings in ordered graphs;Forum of Mathematics, Sigma;2022

2. Transitive Tournament Tilings in Oriented Graphs with Large Minimum Total Degree;SIAM Journal on Discrete Mathematics;2021-01

3. Tilings in randomly perturbed graphs: Bridging the gap between Hajnal‐Szemerédi and Johansson‐Kahn‐Vu;Random Structures & Algorithms;2020-11-28

4. A discrepancy version of the Hajnal–Szemerédi theorem;Combinatorics, Probability and Computing;2020-10-30

5. A Degree Sequence Komlós Theorem;SIAM Journal on Discrete Mathematics;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3