SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM
-
Published:2018
Issue:
Volume:6
Page:
-
ISSN:2050-5094
-
Container-title:Forum of Mathematics, Sigma
-
language:en
-
Short-container-title:Forum of Mathematics, Sigma
Author:
HULSE THOMAS A.,KUAN CHAN IEONG,LOWRY-DUDA DAVID,WALKER ALEXANDER
Abstract
The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to$P_{k}(n)^{2}$, where$P_{k}(n)$is the discrepancy between the volume of the$k$-dimensional sphere of radius$\sqrt{n}$and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including$\sum P_{k}(n)^{2}e^{-n/X}$and the Laplace transform$\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$, in dimensions$k\geqslant 3$. We also obtain main terms and power-saving error terms for the sharp sums$\sum _{n\leqslant X}P_{k}(n)^{2}$, along with similar results for the sharp integral$\int _{0}^{X}P_{3}(t)^{2}\,dt$. This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference31 articles.
1. The Rankin–Selberg method for automorphic functions which are not of rapid decay;Zagier;J. Fac. Sci. Univ. Tokyo Sect. IA Math.,1982
2. On the number of integer points in a sphere;Vinogradov;Izv. Akad. Nauk SSSR Ser. Mat.,1963
3. O pewnem zagadnieniu z rachunku funckcyi asymptotycnych;Sierpiński;Prace mat.-fiz,1906
4. Multiplicative Number Theory I
5. On the mean square formula of the error term in the Dirichlet divisor problem
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献