HILBERT STRATIFOLDS AND A QUILLEN TYPE GEOMETRIC DESCRIPTION OF COHOMOLOGY FOR HILBERT MANIFOLDS
-
Published:2018
Issue:
Volume:6
Page:
-
ISSN:2050-5094
-
Container-title:Forum of Mathematics, Sigma
-
language:en
-
Short-container-title:Forum of Mathematics, Sigma
Author:
KRECK MATTHIAS,TENE HAGGAI
Abstract
In this paper we use tools from differential topology to give a geometric description of cohomology for Hilbert manifolds. Our model is Quillen’s geometric description of cobordism groups for finite-dimensional smooth manifolds [Quillen, ‘Elementary proofs of some results of cobordism theory using steenrod operations’, Adv. Math., 7 (1971)]. Quillen stresses the fact that this construction allows the definition of Gysin maps for ‘oriented’ proper maps. For finite-dimensional manifolds one has a Gysin map in singular cohomology which is based on Poincaré duality, hence it is not clear how to extend it to infinite-dimensional manifolds. But perhaps one can overcome this difficulty by giving a Quillen type description of singular cohomology for Hilbert manifolds. This is what we do in this paper. Besides constructing a general Gysin map, one of our motivations was a geometric construction of equivariant cohomology, which even for a point is the cohomology of the infinite-dimensional space $BG$, which has a Hilbert manifold model. Besides that, we demonstrate the use of such a geometric description of cohomology by several other applications. We give a quick description of characteristic classes of a finite-dimensional vector bundle and apply it to a generalized Steenrod representation problem for Hilbert manifolds and define a notion of a degree of proper oriented Fredholm maps of index $0$.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis