Modelling the effects of thermal environment and dietary composition on pig performance: model testing and evaluation

Author:

Wellock I.J.,Emmans G.C.,Kyriazakis I.

Abstract

AbstractA deterministic, dynamic pig growth model predicting the effect of genotype, and the thermal and nutritional environments on food intake, growth and body composition of growing pigs was tested and evaluated against experimental data from the literature. Four sets of experiments meeting the necessary requirement of feeding the pigs ad libitum and reporting sufficient information on trial conditions were chosen to test the model. The parameters used in the model to describe the kind of pig were protein weight at maturity (Pm) the Gompertz rate parameter (B) and the ratio of mature lipid weight (Lm) to Pm. Values for Pm and B used to apply to the pigs in the four experiments were selected as those which gave the maximum daily gains equal to those reported at thermoneutral temperatures on diets not limiting in protein. The value of Lm was chosen as that which gave a value for food conversion ratio close to that seen in the experiment, again at a thermoneutral temperature and on a non-limiting diet. The model was run for each of the experiments from the given start weight until slaughter weight was reached. All pigs were assumed to have their desired bodily composition at the start of the experimental period, which is determined by their genetic descriptors and weight. From the conditions of the experiments, average daily gain (ADG) average daily food intake (ADFI) food conversion ratio (FCR) final body weight, body composition, average daily gains of each of the chemical body components and heat production (HP) were predicted. Generally as temperature increased or the crude protein content of the food increased, ADFI, ADG and the fatness of the pig decreased, whilst protein content increased. Quantitative differences between the model predictions and the observations, were probably due to the greater sensitivity of the model to temperature. This is likely to reflect the omission of long-term adaptation and acclimatization, or to incorrect estimation of the wetness of the pig’s skin. However, model predictions were generally in good quantitative agreement with the observed data over the wide range of treatments tested. This gives support to the value and accuracy of the model for predicting pig performance when the thermal and nutritional environments are manipulated.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3