Growth and body composition of highly selected boars and gilts

Author:

Van Lunen T. A.,Cole D. J. A.

Abstract

AbstractAn experiment was conducted to measure the growth and body composition changes of highly selected boars and gilts from 10 to 150 kg live weight. Thirty boars and 30 gilts were given food ad libitum and two pigs of each sex were slaughtered at 10-kg increments from 10 kg to 150 kg live weight at which time the chemical composition of the body was determined. Boars and gilts exhibited different patterns of growth, nitrogen deposition rate (NDR) and lipid deposition rate (LDR) with boars exhibiting a sharp peak in daily live-weight gain and NDR while gilts exhibited almost a flat response curve over the age and weight range tested. Gilts experienced a peak in LDR at a lighter weight than boars (75·8 v. 100·5 kg) while NDR peaked at the same weight for both sexes (70·8 kg). Maximum NDR for boars and gilts was 37·7 and 28·1 glday (235·5 and 175·5 glday protein deposition rate) respectively. The Gompertz growth equation [Y = A + C × EXP (−EXP (−B ×(X−M)))] was shown to accurately represent the growth trajectory, while the logarithmic derivative of the allometric equation [Y = aXb] was used to determine live weight and body composition relationships. Combined sex relationships indicated that total body nitrogen and lipid concentrations increased at the same rate. A quadratic equation for the prediction of NDR based on live weight was developed for this genotype (NDR = 24·06 + 0·34 W − 0·002W2). In conclusion, the results provide a basis for comparison of body composition and growth patterns between the highly selected genotype tested and pigs from other genetic backgrounds. Sex effects exist for growth and body composition but combined sex prediction equations can be used to estimate NDR potential.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

Reference36 articles.

1. Evaluation of water concept for in vivo body composition;Shebaita;World Review of Animal Production,1977

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3