Genetic analysis of live weight and ultrasonic fat and muscle traits in a hill sheep flock undergoing breed improvement utilizing an embryo transfer programme

Author:

Roden J. A.,Merrell B. G.,Murray W. A.,Haresign W.

Abstract

AbstractGenetic parameters for pre-weaning live weights and ultrasonic scanning measurements were estimated from a flock of Scottish Blackface sheep undergoing an embryo transfer programme. Maternal environmental effects could be evaluated without confounding with maternal genetic effects because embryos were transferred to unrelated recipient ewes. The data for the study were collected over a 7-year period (1993-1999) and related to a conventional hill farming system. The data were from 1465 lambs, the progeny of 60 sires, 263 donors and 784 recipient ewes. The only exception to the conventional farming system was at mating time when embryos were collected from selected donor ewes, following superovulation, and transferred to unrelated recipient ewes. Maternal environmental effects were important for birth weight (BW), 4-week weight (W4) and weaning weight (WW) but of less importance for ultrasonic fat depth (UFD), muscle depth (UMD) and muscle width (UMW). The heritabilities of the pre-weaning weights were moderate (0·17 to 0·23). The heritabilities of UFD and UMD were 0·44 and 0·27 respectively and were higher than found in previous similar studies. The heritability of UMW was low, 0·06. The genetic and phenotypic correlations among the pre-weaning weight traits were positive and moderate. There was a positive genetic ( + 0·25) and phenotypic ( + 0·24) correlation between UFD and UMD. The phenotypic and genetic correlations between BW and W4 and the scanning traits (UFD, UMD and UMW) were close to zero, and the correlations of WW with UFD, UMD and UMW were positive. The results of this study clearly demonstrate the importance of maternal environmental effects for lamb weights up to weaning and also suggest that genetic improvement for carcass composition in some populations of extensively reared hill sheep could be achieved more rapidly than previously thought possible.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3