Abstract
ABSTRACTThe amyloid hypothesis—the leading mechanistic theory of Alzheimer's disease—states that an imbalance in production or clearance of amyloid β (Aβ) results in accumulation of Aβ and triggers a cascade of events leading to neurodegeneration and dementia. The number of persons with Alzheimer's disease is expected to triple by mid-century. If steps are not taken to delay the onset or slow the progression of Alzheimer's disease, the economic and personal tolls will be immense. Different classes of potentially disease-modifying treatments that interrupt early pathological events (ie, decreasing production or aggregation of Aβ or increasing its clearance) and potentially prevent downstream events are in phase II or III clinical studies. These include immunotherapies; secretase inhibitors; selective Aβ42-lowering agents; statins; anti-Aβ aggregation agents; peroxisome proliferator-activated receptor-gamma agonists; and others. Safety and serious adverse events have been a concern with immunotherapy and γ-secretase inhibitors, though both continue in clinical trials. Anti-amyloid disease-modifying drugs that seem promising and have reached phase III clinical trials include those that selectively target Aβ42 production (eg, tarenflurbil), enhance the activity of α-secretase (eg, statins), and block Aβ aggregation (eg, transiposate).
Publisher
Cambridge University Press (CUP)
Subject
Psychiatry and Mental health,Clinical Neurology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献