Author:
Safavi Kyan C.,Prestipino Ann L.,Zenteno Langle Ana Cecilia,Copenhaver Martin,Hu Michael,Daily Bethany,Koehler Allison,Biddinger Paul D.,Dunn Peter F.
Abstract
Abstract
Before coronavirus disease 2019 (COVID-19), few hospitals had fully tested emergency surge plans. Uncertainty in the timing and degree of surge complicates planning efforts, putting hospitals at risk of being overwhelmed. Many lack access to hospital-specific, data-driven projections of future patient demand to guide operational planning. Our hospital experienced one of the largest surges in New England. We developed statistical models to project hospitalizations during the first wave of the pandemic. We describe how we used these models to meet key planning objectives. To build the models successfully, we emphasize the criticality of having a team that combines data scientists with frontline operational and clinical leadership. While modeling was a cornerstone of our response, models currently available to most hospitals are built outside of their institution and are difficult to translate to their environment for operational planning. Creating data-driven, hospital-specific, and operationally relevant surge targets and activation triggers should be a major objective of all health systems.
Publisher
Cambridge University Press (CUP)
Subject
Public Health, Environmental and Occupational Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献