Evaluation of and period polynomial relations

Author:

Charlton StevenORCID,Keilthy AdamORCID

Abstract

Abstract In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and the coradical filtration [9]. In particular, there are additional relations in the depth graded algebra coming from period polynomials of cusp forms for $\operatorname {\mathrm {SL}}_2({\mathbb {Z}})$ . In contrast, a simple combinatorial filtration, the block filtration [13, 28] is known to agree with the coradical filtration, and so there is no similar defect in the associated graded. However, via an explicit evaluation of $\zeta (2,\ldots ,2,4,2,\ldots ,2)$ as a polynomial in double zeta values, we derive these period polynomial relations as a consequence of an intrinsic symmetry of block graded multiple zeta values in block degree 2. In deriving this evaluation, we find a Galois descent of certain alternating double zeta values to classical double zeta values, which we then apply to give an evaluation of the multiple t values [22] $t(2\ell ,2k)$ in terms of classical double zeta values.

Publisher

Cambridge University Press (CUP)

Reference42 articles.

1. [11] Charlton, S. , ‘Identities arising from coproducts on multiple zeta values and multiple polylogarithms’, Ph.D. thesis, University of Durham, 2016. URL http://etheses.dur.ac.uk/11834/.

2. On the decomposition of motivic multiple zeta values

3. The Alternating Block Decomposition of Iterated Integrals and Cyclic Insertion on Multiple Zeta Values

4. [19] Glanois, C. , ‘Unramified Euler sums and Hoffman $\star$ basis’, Preprint, 2016, arXiv:1603.05178.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3