Abstract
Abstract
Let
$\overline {\mathcal {M}}_{g, m|n}$
denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data
$$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$$
and let
$\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$
be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for
$(S_m\times S_n)$
-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for
$S_{n}$
-equivariant Hodge–Deligne polynomials of
$\overline {\mathcal {M}}_{g,n}$
and
$\mathcal {M}_{g,n}$
.
Publisher
Cambridge University Press (CUP)
Reference31 articles.
1. Chow groups of the moduli spaces of weighted pointed stable curves of genus zero;Ceyhan;Adv. Math.,2009
2. [11] Getzler, E. , ‘Mixed Hodge structures of configuration spaces’, Preprint, 1995, arXiv:alg-geom/9510018.
3. Topology of tropical moduli of weighted stable curves;Cerbu;Adv. Geom.,2020
4. The semi-classical approximation for modular operads;Getzler;Comm. Math. Phys.,1998
5. The moduli space of stable quotients;Marian;Geom. Topol.,2011