Mobile home residence as a risk factor for adverse events among children in a mixed rural–urban community: A case for geospatial analysis

Author:

Patel Archna A.ORCID,Wheeler Philip H.,Wi Chung-Il,Derauf Chris,Ryu Euijung,Zahrieh David,Bjur Kara A.,Juhn Young J.

Abstract

AbstractBackground:Given the significant health effects, we assessed geospatial patterns of adverse events (AEs), defined as physical or sexual abuse and accidents or poisonings at home, among children in a mixed rural–urban community.Methods:We conducted a population-based cohort study of children (<18 years) living in Olmsted County, Minnesota, to assess geographic patterns of AEs between April 2004 and March 2009 using International Classification of Diseases, Ninth Revision codes. We identified hotspots by calculating the relative difference between observed and expected case densities accounting for population characteristics ($$Relative\;Difference = {\rm{ }}{{Observed\;Case\;Density - Expected\;Case\;Density} \over {Expected\;Case\;Density}}$$; hotspot ≥ 0.33) using kernel density methods. A Bayesian geospatial logistic regression model was used to test for association of subject characteristics (including residential features) with AEs, adjusting for age, sex, and socioeconomic status (SES).Results:Of the 30,227 eligible children (<18 years), 974 (3.2%) experienced at least one AE. Of the nine total hotspots identified, five were mobile home communities (MHCs). Among non-Hispanic White children (85% of total children), those living in MHCs had higher AE prevalence compared to those outside MHCs, independent of SES (mean posterior odds ratio: 1.80; 95% credible interval: 1.22–2.54). MHC residency in minority children was not associated with higher prevalence of AEs. Of addresses requiring manual correction, 85.5% belonged to mobile homes.Conclusions:MHC residence is a significant unrecognized risk factor for AEs among non-Hispanic, White children in a mixed rural–urban community. Given plausible outreach difficulty due to address discrepancies, MHC residents might be a geographically underserved population for clinical care and research.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference54 articles.

1. 24. Olmsted County Public Health Services OMC, Mayo Clinic. Olmsted County, Minnesota Community Health Needs Assessment October 2013 [Internet] [cited Oct 15, 2014]. (https://www.co.olmsted.mn.us/OCPHS/reports/Documents/Community%20Health%20Needs%20Assessment%202013.pdf)

2. Smoking status, dental visits and receipt of tobacco counseling in dental office among mobile and trailer home adolescents;Bhoopathi;BMC Oral Health,2016

3. Bayesian image restoration with two applications in spatial statistics;Besag;Annals of the Institute of Statistical Mathematics,1991

4. Why patients visit their doctors: assessing the most prevalent conditions in a defined American population;St Sauver;Mayo Clinic Proceedings,2013

5. Ethnicity, socioeconomic status, and health disparities in a mixed rural-urban US community-olmsted county, Minnesota;Wi;Mayo Clinic Proceedings,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3