Abstract
AbstractIntroduction:In many countries, there is a skills gap in proton therapy with many staff unprepared to work with the new technology. The new Virtual Environment for Radiotherapy Training (VERT) proton module provides learners with a simulated proton machine 3D environment. This project aimed to evaluate the role of VERT in training the radiotherapy workforce for the future use of protons.Methods:A practical teaching session using VERT was deployed after a traditional teaching session had provided basic knowledge. A questionnaire deployed before and after VERT enabled comparison of knowledge while a combination of Likert and open questions gathered participant feedback concerning the initiative.Results:A total of 38 students provided evaluation of the session. Overall, there were high levels of satisfaction and enjoyment with 35 participants reporting enjoyment and 36 indicating that the event be repeated.Discussion:Participants felt that they had learned from the experience, although quantitative data lacked statistical significance to demonstrate this. All participants agreed that VERT had provided improved understanding of proton dose deposition arising from visualisation of beams and dose deposition. Most participants agreed that the simulation was realistic and that it had improved their understanding. Feedback in relation to future sessions concerned smaller group sizes, more patient cases, more time and additional clinical datasets.Conclusion:A proton simulation module has been shown to be an enjoyable teaching tool that improves students’ confidence in their knowledge of the underpinning theory and clinical usage of the modality. Learners felt better prepared to encounter protons in clinical practice. Future work will build on these findings using smaller group work and a more robust assessment tool to identify long-term impact of the training.
Publisher
Cambridge University Press (CUP)
Subject
Oncology,Radiology, Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献