Validation of GATE Monte Carlo code for simulation of proton therapy using National Institute of Standards and Technology library data

Author:

Zarifi Shiva,Taleshi Ahangari Hadi,Jia Sayyed Bijan,Tajik-Mansoury Mohammad Ali

Abstract

AbstractAimTo validate the Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation code by calculating the proton beam range in the therapeutic energy range.Materials and methodsIn this study, the GATE code which is based on Geant4 was used for simulation. The proton beams in the therapeutic energy range (5–250 MeV) were simulated in a water medium, and then compared with the data from National Institute of Standards and Technology (NIST) in order to investigate the accuracy of different physics list available in the GATE code. In addition, the optimal value of SetCut was assessed.ResultsIn all energy ranges, the QBBC physics had a greater deviation in the ranges relative to the NIST data. With respect to the range calculation accuracy, the QGSP_BIC_EMY and QGSP_BERT_HP_EMY physics were in the range of statistical uncertainty; however, QGSP_BIC_EMY produced better results using the least squares. Based on an investigation into the range calculation precision and simulation efficiency, the optimal SetCut was set at 0·1 mm.FindingsBased on an investigation into the range calculation precision and simulation yield, the QGSP_BIC_EMY physics and the optimal SetCut was recommended to be 0·1 mm.

Publisher

Cambridge University Press (CUP)

Subject

Oncology,Radiology, Nuclear Medicine and imaging

Reference27 articles.

1. Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation

2. Bozkurt A . (ed). Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies. EPJ Web of Conferences. EDP Sciences. Les Ulis, France, 2017.

3. Gottschalk B . Passive beam spreading in proton radiation therapy, unpublished book, 2004.

4. Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE

5. Berger M , Coursey J , Zucker M et al Stopping-power and range tables for electrons, protons, and helium ions, 2005. http://physicsnistgov. 2015. Accessed on March 2018.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3