Author:
Anvari Akbar,Aghamiri Seyed Mahmoud Reza,Mahdavi Seyed Rabie,Alaei Parham
Abstract
AbstractPurposeIn this work, dosimetric properties of the PTW Octavius detector in and out of the irradiation field have been evaluated. The 2D array of ion chambers has the potential to simplify the linear accelerator QA and pre-treatment verification.Materials and methodsThe evaluation was performed using customised written codes in Matlab and SPSS software for statistical analysis.ResultsExperiments indicate that the reproducibility and stability of the measurements were excellent; the detector showed the same signal with a maximum deviation of <0·5% in the short and long term. Comparisons of the ion chamber with the detector showed the same results with a maximum deviation of ~0·1%. As the detector response is linear with the dose, it can be used for the measurement at regions of high-dose gradient effectively. Logarithmic regression y=0·127 ln(x)+0·729 for detector signal and field size changes yielded a coefficient of determination of 0·997. The dose value decreases with increase in source-to-surface distance, which was modelled using a binomial regression with a coefficient of determination of 0·998 that agrees with the ionisation chamber measurement within 1%.ConclusionOn the basis of the measurements and comparisons performed, this system is a reliable and accurate dosimeter for quality assurance in radiotherapy.
Publisher
Cambridge University Press (CUP)
Subject
Oncology,Radiology, Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献