Thought flow nets: From single predictions to trains of model thought

Author:

Schuff HendrikORCID,Adel Heike,Vu Ngoc Thang

Abstract

Abstract When humans solve complex problems, they typically construct, reflect, and revise sequences of ideas, hypotheses, and beliefs until a final decision or conclusion is reached. Contrary to this, current machine learning models are mostly trained to map an input to one single and fixed output. In this paper, we investigate how we can equip models with the ability to represent, construct, and evaluate a second, third, and $k$ -th thought within their prediction process. Drawing inspiration from Hegel’s dialectics, we propose and evaluate the thought flow concept which constructs a sequence of predictions. We present a self-correction mechanism which (a) is trained to estimate the model’s correctness and which (b) performs iterative prediction updates based on the gradient of the correctness prediction. We introduce our method focusing initially on question answering (QA) and carry out extensive experiments which demonstrate that (i) our method is able to correct its own predictions and that (ii) it can improve model performance by a large margin. In addition, we conduct a qualitative analysis of thought flow correction patterns and explore how thought flow predictions affect users’ human-AI collaboration in a crowdsourcing study. We find that (iii) thought flows improve user performance and are perceived as more natural, correct, and intelligent regarding single and/or top-3 predictions.

Publisher

Cambridge University Press (CUP)

Reference59 articles.

1. Banino, A. , Balaguer, J. and Blundell, C. (2021). Pondernet: Learning to ponder. CoRR, abs/2107.05407.

2. Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, June 19-24, 2016, New York City, NY, USA, vol. 48, pp. 1050–1059. JMLR Workshop and Conference Proceedings, JMLR.org.

3. Guo, C. , Pleiss, G. , Sun, Y. and Weinberger, K.Q. (2017). On calibration of modern neural networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, 6-11 August 2017, Sydney, NSW, Australia, vol. 70, pp. 1321–1330, Proceedings of Machine Learning Research, PMLR.

4. An iterative prediction and correction method for automatic stereocomparison

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3