Abstract
Abstract
In this paper we develop renewal theorems for point processes with interarrival times ξ(Xn+1Xn…), where (Xn)n∈ℤ is a stochastic process with finite state space Σ and ξ:ΣA→ℝ is a Hölder continuous function on a subset ΣA⊂Σℕ. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry, for instance to the problem of Minkowski measurability of self-conformal sets.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献