Degree-dependent threshold-based random sequential adsorption on random trees

Author:

Meyfroyt Thomas M. M.

Abstract

Abstract We consider a special version of random sequential adsorption (RSA) with nearest-neighbor interaction on infinite tree graphs. In classical RSA, starting with a graph with initially inactive nodes, each of the nodes of the graph is inspected in a random order and is irreversibly activated if none of its nearest neighbors are active yet. We generalize this nearest-neighbor blocking effect to a degree-dependent threshold-based blocking effect. That is, each node of the graph is assumed to have its own degree-dependent threshold and if, upon inspection of a node, the number of active direct neighbors is less than that node's threshold, the node will become irreversibly active. We analyze the activation probability of nodes on an infinite tree graph, given the degree distribution of the tree and the degree-dependent thresholds. We also show how to calculate the correlation between the activity of nodes as a function of their distance. Finally, we propose an algorithm which can be used to solve the inverse problem of determining how to set the degree-dependent thresholds in infinite tree graphs in order to reach some desired activation probabilities.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3