Abstract
AbstractLetPbe the transition matrix of a positive recurrent Markov chain on the integers with invariant probability vectorπT, and let(n)P̃ be a stochastic matrix, formed by augmenting the entries of the (n+ 1) x (n+ 1) northwest corner truncation ofParbitrarily, with invariant probability vector(n)πT. We derive computableV-norm bounds on the error betweenπTand(n)πTin terms of the perturbation method from three different aspects: the Poisson equation, the residual matrix, and the norm ergodicity coefficient, which we prove to be effective by showing that they converge to 0 asntends to ∞ under suitable conditions. We illustrate our results through several examples. Comparing our error bounds with the ones of Tweedie (1998), we see that our bounds are more applicable and accurate. Moreover, we also consider possible extensions of our results to continuous-time Markov chains.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献