The weak law of large numbers for nonnegative summands

Author:

Seneta Eugene

Abstract

Abstract Khintchine's (necessary and sufficient) slowly varying function condition for the weak law of large numbers (WLLN) for the sum of n nonnegative, independent and identically distributed random variables is used as an overarching (sufficient) condition for the case that the number of summands is more generally [cn],cn→∞. Either the norming sequence {an},an→∞, or the number of summands sequence {cn}, can be chosen arbitrarily. This theorem generalizes results from a motivating branching process setting in which Khintchine's sufficient condition is automatically satisfied. A second theorem shows that Khintchine's condition is necessary for the generalized WLLN when it holds with cn→∞ and an→∞. Theorem 3, which is known, gives a necessary and sufficient condition for Khintchine's WLLN to hold with cn=n and an a specific function of n; it is extended to general cn subject to a growth restriction in Theorem 4. Section 6 returns to the branching process setting.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3