Author:
Chaumont Loïc,Nguyen Thi Ngoc Anh
Abstract
AbstractThe forest of mutations associated to a multitype branching forest is obtained by merging together all vertices in each of its clusters and by preserving connections between them. (Here, by cluster, we mean a maximal connected component of the forest in which all vertices have the same type.) We first show that the forest of mutations of any multitype branching forest is itself a branching forest. Then we give its progeny distribution and we describe some of its crucial properties in terms of the initial progeny distribution. We also obtain the limiting behaviour of the number of mutations both when the total number of individuals tends to ∞ and when the number of roots tends to ∞. The continuous-time case is then investigated by considering multitype branching forests with edge lengths. When mutations are nonreversible, we give a representation of their emergence times which allows us to describe the asymptotic behaviour of the latter, under certain conditions on the mutation rates. These results have potential relevance for emergence of mutations in population cells, particularly for genetic evolution of cancer or development of infectious diseases.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献