Paleogeographic evolution and avulsion history of the Holocene Rhine-Meuse delta, The Netherlands

Author:

Berendsen H.J.A.,Stouthamer E.

Abstract

AbstractApproximately 200,000 lithological borehole descriptions, 1200 14C dates, 36,000 dated archaeological artifacts, and gradients of palaeochannels were used to reconstruct the Holocene evolution of the fluvial part of the Rhine-Meuse delta. Ages of all Holocene channel belts were stored in a Geographical Information System database that enables generation of palaeogeographic maps for any time during the Holocene. The time resolution of the palaeogeographic reconstruction is about 200 years.During the Holocene, avulsion was an important process, resulting in frequent shifts of areas of clastic sedimentation. Palaeogeographic evolution and avulsion history of the Rhine-Meuse delta are governed by complex interactions among several factors. These are: (1) Location and shape of the Late Weichselian palaeovalley. In the Early Holocene, rivers were confined to the LateWeichselian valley. When aggradation shifted upstream, the margins of the valley were crossed by newly formed channel belts. (2) Sealevel rise, which resulted in back-filling of the palaeovalley. (3) River channel pattern. In the central-western part of the delta, a straight anastomosed channel pattern with large-scale crevassing developed as a result of sealevel rise and the associated decrease of stream power. (4) Neotectonics. Differential tectonic movements of the Peel Horst and Roer Valley Graben seem to have influenced river behaviour (formation of an asymmetrical meander belt, location of avulsion nodes in fault zones), especially from 4500–2800 14C yr BP when the rate of sealevel rise had decreased. After 2800 14C yr BP sealevel rise further decreased, and tectonic influence still may have influenced avulsions, but from then on other factors became dominant. (5) Increased discharge, sediment load and/or within-channel sedimentation. After 2800 14C yr BP, meander wavelenghts increased, which is interpreted as a result of increased bankfull discharge and/or within channel sedimentation. After 2000 14C yr BP both discharge and sediment load increased as a result of human influence. (6) Coastal configuration. The limited number of tidal inlets and extensive peat formation restricted the number of avulsions in the western part of the delta, and enhanced channel reoccupation. (7) Composition of the substrate and river banks. Meandering river channels tended to adhere to the sandy margins of the LateWeichselian palaeovalley, and high channel sinuosity is found in areas where river banks consisted of sand. Peat formation, which was most extensive in the western part of the back-barrier area especially between 4000 and 3000 14C yr BP, more or less fixed the river pattern at that time, hampering avulsions. (8) Marine ingressions, e.g. the 1421 AD St. Elizabeth’s flood caused large-scale erosion in the southwestern part of the fluvial deltaic plain, resulting in a shift of the main drainage to the SW. (9) Human influence. Since about 1100 AD human influence dominated the palaeogeographic evolution. Rivers were embanked and natural avulsions did no longer occur.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference45 articles.

1. Hoek W.Z. , 1997. Palaeogeography of Lateglacial Vegetations: Aspects of Lateglacial and Early Holocene vegetation, the abiotic landscape and climate of the Netherlands, and Atlas to Palaeogeography of Lateglacial Vegetations: Maps of the Lateglacial and Early Holocene landscape and vegetation of the Netherlands, with an extensive review of Palynological data. Ph. D. Thesis, Free University, Amsterdam. Also published as: Netherlands Geographical Studies 230 and 231, KNAG, Utrecht.

2. Törnqvist T.E. , 1993a. Fluvial sedimentary geology and chronology of the Holocene Rhine-Meuse delta, The Netherlands. Ph.D. thesis Utrecht University, KNAG/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, Netherlands Geographical Studies 166:176 pp.

3. Optimizing sampling strategy for radiocarbon dating of Holocene fluvial systems in a vertically aggrading setting;Törnqvist;Boreas,1993

4. A REVIEW OF THE ORIGIN AND CHARACTERISTICS OF RECENT ALLUVIAL SEDIMENTS

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3