Laser-diffraction and pipette-method grain sizing of Dutch sediments: correlations for fine fractions of marine, fluvial, and loess samples

Author:

Buurman P.,Pape Th.,Reijneveld J.A.,de Jong F.,van Gelder E.

Abstract

AbstractTo evaluate correlations between silt and clay fractions determined by pipette method and laser diffraction, samples from Dutch fine marine, fluvial, and loess deposits were analysed by both methods. For fluvial deposits, correlations for fractions <2 and >50 μm were excellent (R2 > 0.95), those for 2–4, 4–8, 16–32 and 32–50 μm were satisfactory (R2 = 0.80 – 0.95), while that for the fraction 8–16 μm had an R2 of only 0.68. For marine deposits, correlations for <2 and >50 μm were in the same range, but those of all other fractions except 8–16 μm were lower. In the loess samples, correlations for all but the 8–16 μm fraction were unsatisfactory. Laser diffraction gave 42% of pipette clay in marine samples, and 62% in fluvial and loess samples if regressions are forced through 0. Sand fractions detected by laser diffraction were 107% of the sieve fraction in marine samples, and 99% in the fluvial samples. Correlations for fractions smaller than reference size are generally better than those for individual size fractions. Both the 2 μm and the 50 μm boundary cause problems in the comparison. The first because of platy shape of clay minerals, and the second due to both a change in method in the pipette/sieving procedure, and to non-sphericity of particles. Apparently, correlations for clay- and silt-size fractions obtained by pipette method and laser diffraction will be different for each type of sediment.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference12 articles.

1. Laser grain-size determination in soil genetic studies 2;Muggler;Clay content, clay formation, and aggregation in some Brazilian Oxisols. Soil Science,1997

2. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3