Reconstructing Late Quaternary fluvial process controls in the upper Aller Valley (North Germany) by means of numerical modeling

Author:

Veldkamp A.,Van den Berg M.W.,Van Dijke J.J.,Van den Berg van Saparoea R.M.

Abstract

AbstractThe morpho-genetic evolution of the upper Aller valley (Weser basin, North Germany) was reconstructed using geological and géomorphologie data integrated within a numerical process model framework (FLUVER-2). The current relief was shaped by Pre-Elsterian fluvial processes, Elsterian and Saalian ice sheets, followed by Weichselian fluvial processes. Structural analysis based on subsurface data and morphological interpretations were used to reconstruct uplift/subsidence rates. A detailed analysis led to the hypothesis that we are dealing with either a NNW-SSE or a WSW-ENE oriented compression leading to uplift in the upper Aller valley. It is also hypothesised that the NNW-SSE compression might have caused strike-slip deformation leading to differential block movement and tilt. Two different uplift rate scenarios were reconstructed and used as a variable parameter in numerical modelling scenarios simulating the Late Quaternary longitudinal dynamics of the Aller. Each different scenario was run for 150.000 years and calibrated to the actual setting. The resulting model settings were consequently evaluated for their plausibility and validity. Subsequently, regional semi-3D simulations of valley development were made to test the two tectonic stress hypotheses. Differential tectonic uplift and regional tilt seems to have played an important role in shaping the current valley morphology in the upper Aller. Unfortunately, due to the uncertainties involved, we were unable to discriminate between the two postulated tectonic stress scenarios.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3