Cyclic hardening/softening experimental data in nano-clay-composite and aluminum alloy under high-temperature strain-controlled loading

Author:

Azadi MohammadORCID,Bahmanabadi HamedORCID,Gruen Florian,Winter Gerhard,Seisenbacher Benjamin

Abstract

Abstract This article presents cyclic hardening/softening behaviors (experimental data) of the heat-treated aluminum-matrix nano-clay-composite (AlSi_N_HT6), compared to those of the piston aluminum alloy (AlSi) under strain-controlled loading. For such an objective, standard samples were fabricated by gravity and stir-casting methods. Low-cycle fatigue experiments were carried out under different strain amplitudes (0.20–0.45%) and at various temperatures (25–300°C). Obtained results implied that no obvious change was observed on material properties of aluminum alloy by reinforcements, but a decrement was observed due to increasing the temperature. Results also indicated that the increase of the temperature from 25°C to 200°C has changed the cyclic behavior of both materials (AlSi_N_HT6 and AlSi) from hardening to softening. Moreover, the temperature effect was more significant than the total strain amplitude influences in cyclic behaviors.

Funder

IMPULSE funding program between Iran and Austria

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3