Fuzzy answer sets approximations

Author:

ALVIANO MARIO,PEÑALOZA RAFAEL

Abstract

AbstractFuzzy answer set programming (FASP) is a recent formalism for knowledge representation that enriches the declarativity of answer set programming by allowing propositions to be graded. To now, no implementations of FASP solvers are available and all current proposals are based on compilations of logic programs into different paradigms, like mixed integer programs or bilevel programs. These approaches introduce many auxiliary variables which might affect the performance of a solver negatively. To limit this downside, operators for approximating fuzzy answer sets can be introduced: Given a FASP program, these operators compute lower and upper bounds for all atoms in the program such that all answer sets are between these bounds. This paper analyzes several operators of this kind which are based on linear programming, fuzzy unfounded sets and source pointers. Furthermore, the paper reports on a prototypical implementation, also describing strategies for avoiding computations of these operators when they are guaranteed to not improve current bounds. The operators and their implementation can be used to obtain more constrained mixed integer or bilevel programs, or even for providing a basis for implementing a native FASP solver. Interestingly, the semantics of relevant classes of programs with unique answer sets, like positive programs and programs with stratified negation, can be already computed by the prototype without the need for an external tool.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Answer Set Programming: From Theory to Practice;Studies in Computational Intelligence;2020

2. Foundations of a DPLL-Based Solver for Fuzzy Answer Set Programs;Studies in Computational Intelligence;2019

3. Modeling multi-valued biological interaction networks using fuzzy answer set programming;Fuzzy Sets and Systems;2018-08

4. Fuzzy answer set computation via satisfiability modulo theories;Theory and Practice of Logic Programming;2015-07

5. A Fuzzy Extension to the OWL 2 RL Ontology Language;The Computer Journal;2015-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3