Conflict Generalisation in ASP: Learning Correct and Effective Non-Ground Constraints

Author:

TAUPE RICHARDORCID,WEINZIERL ANTONIUSORCID,FRIEDRICH GERHARD

Abstract

AbstractGeneralising and re-using knowledge learned while solving one problem instance has been neglected by state-of-the-art answer set solvers. We suggest a new approach that generalises learned nogoods for re-use to speed-up the solving of future problem instances. Our solution combines well-known ASP solving techniques with deductive logic-based machine learning. Solving performance can be improved by adding learned non-ground constraints to the original program. We demonstrate the effects of our method by means of realistic examples, showing that our approach requires low computational cost to learn constraints that yield significant performance benefits in our test cases. These benefits can be seen with ground-and-solve systems as well as lazy-grounding systems. However, ground-and-solve systems suffer from additional grounding overheads, induced by the additional constraints in some cases. By means of conflict minimization, non-minimal learned constraints can be reduced. This can result in significant reductions of grounding and solving efforts, as our experiments show.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference23 articles.

1. 18. Ryabokon, A. 2015. Knowledge-based (re)configuration of complex products and services. Ph.D. thesis, Alpen-Adria-Universität Klagenfurt.

2. 7. Gebser, M. , Kaminski, R. , Kaufmann, B. , and Schaub, T. 2014. Clingo = ASP + control: Preliminary report. CoRR abs/1405.3694.

3. 2. Bogaerts, B. and Weinzierl, A. 2018. Exploiting justifications for lazy grounding of answer set programs. In IJCAI. ijcai.org, 1737–1745.

4. The Seventh Answer Set Programming Competition: Design and Results

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3