Abstract
Abstract
Answer set programming (ASP) is a popular declarative programming paradigm with various applications. Programs can easily have many answer sets that cannot be enumerated in practice, but counting still allows quantifying solution spaces. If one counts under assumptions on literals, one obtains a tool to comprehend parts of the solution space, so-called answer set navigation. However, navigating through parts of the solution space requires counting many times, which is expensive in theory. Knowledge compilation compiles instances into representations on which counting works in polynomial time. However, these techniques exist only for conjunctive normal form (CNF) formulas, and compiling ASP programs into CNF formulas can introduce an exponential overhead. This paper introduces a technique to iteratively count answer sets under assumptions on knowledge compilations of CNFs that encode supported models. Our anytime technique uses the inclusion–exclusion principle to improve bounds by over- and undercounting systematically. In a preliminary empirical analysis, we demonstrate promising results. After compiling the input (offline phase), our approach quickly (re)counts.
Publisher
Cambridge University Press (CUP)
Reference89 articles.
1. Fichte, J. K. , Hecher, M. and Nadeem, M. A. 2022c. Plausibility reasoning via projected answer set counting - a hybrid approach. In Proceedings of the 31st International Joint Conference on Artificial Intelligence, (IJCAI’22), L. D. Raedt, Ed. International Joint Conferences on Artificial Intelligence Organization, 2620–2626.
2. Dvořák, W. , Gaggl, S. A. , Rapberger, A. , Wallner, J. P. and Woltran, S. 2020. The ASPARTIX system suite. In Proceedings of the 8th International Conference on Computational Models of Argument (COMMA’20), Prakken, H. , Bistarelli, S. , Santini, F. and Taticchi, C. , Eds. FAIA, vol. 326. IOS Press, 461–462.
3. Fichte, J. K. , Gaggl, S. A. , Hecher, M. and Rusovac, D. 2022a. IASCAR: Incremental answer set counting by anytime refinement. In Proceedings of the 16th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’22), G. Gottlob, D. Inclezan and M. Maratea, Eds. Lecture Notes in Computer Science, vol. 13416. Springer, 217–230.