Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming

Author:

LISI FRANCESCA A.

Abstract

AbstractBuilding rules on top of ontologies is the ultimate goal of the logical layer of the Semantic Web. To this aim, an ad-hoc markup language for this layer is currently under discussion. It is intended to follow the tradition of hybrid knowledge representation and reasoning systems, such as$\mathcal{AL}$-log that integrates the description logic$\mathcal{ALC}$and the function-free Horn clausal languageDatalog. In this paper, we consider the problem of automating the acquisition of these rules for the Semantic Web. We propose a general framework for rule induction that adopts the methodological apparatus of Inductive Logic Programming and relies on the expressive and deductive power of$\mathcal{AL}$-log. The framework is valid whatever the scope of induction (description versus prediction) is. Yet, for illustrative purposes, we also discuss an instantiation of the framework which aims at description and turns out to be useful in Ontology Refinement.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification Rules Explain Machine Learning;Proceedings of the 14th International Conference on Agents and Artificial Intelligence;2022

2. Dataset Anonyization on Cloud: Open Problems and Perspectives;Current Trends in Web Engineering;2020

3. Measuring the Impact of the Semantic-Based Process Mining Approach;Applications and Developments in Semantic Process Mining;2020

4. State-of-the-Art Components, Tools, and Methods for Process Mining and Semantic Modelling;Applications and Developments in Semantic Process Mining;2020

5. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain;Advances in Intelligent Systems and Computing;2018-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3