Polytool: Polynomial interpretations as a basis for termination analysis of logic programs

Author:

NGUYEN MANH THANG,DE SCHREYE DANNY,GIESL JÜRGEN,SCHNEIDER-KAMP PETER

Abstract

AbstractOur goal is to study the feasibility of porting termination analysis techniques developed for one programming paradigm to another paradigm. In this paper, we show how to adapt termination analysis techniques based on polynomial interpretations—very well known in the context of term rewrite systems—to obtain new (nontransformational) termination analysis techniques for definite logic programs (LPs). This leads to an approach that can be seen as a direct generalization of the traditional techniques in termination analysis of LPs, where linear norms and level mappings are used. Our extension generalizes these to arbitrary polynomials. We extend a number of standard concepts and results on termination analysis to the context of polynomial interpretations. We also propose a constraint-based approach for automatically generating polynomial interpretations that satisfy the termination conditions. Based on this approach, we implemented a new tool, called Polytool, for automatic termination analysis of LPs.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Decidable Classes of Finitely Ground Logic Programs with Function Symbols;ACM Transactions on Computational Logic;2017-12-19

2. Logic + control: On program construction and verification;Theory and Practice of Logic Programming;2017-06-19

3. Analyzing Program Termination and Complexity Automatically with AProVE;Journal of Automated Reasoning;2016-10-21

4. Correctness and Completeness of Logic Programs;ACM Transactions on Computational Logic;2016-07-22

5. Models for Logics and Conditional Constraints in Automated Proofs of Termination;Artificial Intelligence and Symbolic Computation;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3