Author:
SAAD AYA,FRÜHWIRTH THOM,GERVET CARMEN
Abstract
AbstractThis paper introduces a new constraint domain for reasoning about data with uncertainty. It extends convex modeling with the notion of p-box to gain additional quantifiable information on the data whereabouts. Unlike existing approaches, the p-box envelops an unknown probability instead of approximating its representation. The p-box bounds are uniform cumulative distribution functions (cdf) in order to employ linear computations in the probabilistic domain. The reasoning by means of p-box cdf-intervals is an interval computation which is exerted on the real domain then it is projected onto the cdf domain. This operation conveys additional knowledge represented by the obtained probabilistic bounds. The empirical evaluation of our implementation shows that, with minimal overhead, the output solution set realizes a full enclosure of the data along with tighter bounds on its probabilistic distributions.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献