A Brief History of Updates of Answer-Set Programs

Author:

LEITE JOÃOORCID,SLOTA MARTIN

Abstract

AbstractOver the last couple of decades, there has been a considerable effort devoted to the problem of updating logic programs under the stable model semantics (a.k.a. answer-set programs) or, in other words, the problem of characterising the result of bringing up-to-date a logic program when the world it describes changes. Whereas the state-of-the-art approaches are guided by the same basic intuitions and aspirations as belief updates in the context of classical logic, they build upon fundamentally different principles and methods, which have prevented a unifying framework that could embrace both belief and rule updates. In this paper, we will overview some of the main approaches and results related to answer-set programming updates, while pointing out some of the main challenges that research in this topic has faced.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference96 articles.

1. Liu, H. , Lutz, C. , Miličić, M. and Wolter, F. 2006. Updating description logic ABoxes. In Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), P. Doherty, J. Mylopoulos and C. A. Welty, Eds. AAAI Press, Lake District of the United Kingdom, 46–56.

2. An abductive framework for computing knowledge base updates

3. AGM 25 Years

4. Slota, M. and Leite, J. 2012b. A unifying perspective on knowledge updates. In Proceedings of the 13th European Conference on Logics in Artificial Intelligence (JELIA 2012), L. F. del Cerro, A. Herzig and J. Mengin, Eds. Logics in Artificial Intelligence (LNAI), vol. 7519. Springer, Toulouse, France, 372–384.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Syntactic ASP forgetting with forks;Artificial Intelligence;2024-01

2. Forming We-intentions under breakdown situations in human-robot interactions;Computer Methods and Programs in Biomedicine;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3