White-box Induction From SVM Models: Explainable AI with Logic Programming

Author:

SHAKERIN FARHADORCID,GUPTA GOPAL

Abstract

AbstractWe focus on the problem of inducing logic programs that explain models learned by the support vector machine (SVM) algorithm. The top-down sequential covering inductive logic programming (ILP) algorithms (e.g., FOIL) apply hill-climbing search using heuristics from information theory. A major issue with this class of algorithms is getting stuck in local optima. In our new approach, however, the data-dependent hill-climbing search is replaced with a model-dependent search where a globally optimal SVM model is trained first, then the algorithm looks into support vectors as the most influential data points in the model, and induces a clause that would cover the support vector and points that are most similar to that support vector. Instead of defining a fixed hypothesis search space, our algorithm makes use of SHAP, an example-specific interpreter in explainable AI, to determine a relevant set of features. This approach yields an algorithm that captures the SVM model’s underlying logic and outperforms other ILP algorithms in terms of the number of induced clauses and classification evaluation metrics.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference40 articles.

1. 4. Tianqi, Chen and Guestrin, Carlos . 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD (San Francisco, California, USA) (KDD ’16). 785–794.

2. 12. Glenn, Fung , Sathyakama, Sandilya , and Bharat Rao, R. . 2005. Rule Extraction from Linear Support Vector Machines. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (Chicago, Illinois, USA) (KDD ’05). ACM, New York, NY, USA, 32–40.

3. 21. Lundberg, Scott M , Gabriel G Erion, and Su-In Lee. 2018. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018).

4. 26. Stephen Muggleton, Luc de Raedt, David Poole, Ivan Bratko, Peter Flach, Katsumi Inoue, and Ashwin Srinivasan. 2012. ILP Turns 20. Mach. Learn. 86, 1 (Jan. 2012), 3–23.

5. 25. Muggleton, Stephen . 1991. Inductive Logic Programming. New Gen. Comput. 8, 4 (Feb. 1991), 295–318.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-AI interaction research agenda: A user-centered perspective;Data and Information Management;2024-07

2. SVM Can Tell More: Explaining Black-Box Machine Learning Models with Local SVM;2024

3. Explainability as the key ingredient for AI adoption in Industry 5.0 settings;Frontiers in Artificial Intelligence;2023-12-11

4. Counterfactual Explanations for Commonly used Text Classifiers focus on Review Classification;2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2023-12-04

5. Explainable AI in Manufacturing: an Analysis of Transparency and Interpretability Methods for the XMANAI Platform;2023 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3