Abstract
Abstract
We present and discuss a runtime architecture that integrates sensorial data and classifiers with a logic-based decision-making system in the context of an e-Health system for the rehabilitation of children with neuromotor disorders. In this application, children perform a rehabilitation task in the form of games. The main aim of the system is to derive a set of parameters the child’s current level of cognitive and behavioral performance (e.g., engagement, attention, task accuracy) from the available sensors and classifiers (e.g., eye trackers, motion sensors, emotion recognition techniques) and take decisions accordingly. These decisions are typically aimed at improving the child’s performance by triggering appropriate re-engagement stimuli when their attention is low, by changing the game or making it more difficult when the child is losing interest in the task as it is too easy. Alongside state-of-the-art techniques for emotion recognition and head pose estimation, we use a runtime variant of a probabilistic and epistemic logic programming dialect of the Event Calculus, known as the Epistemic Probabilistic Event Calculus. In particular, the probabilistic component of this symbolic framework allows for a natural interface with the machine learning techniques. We overview the architecture and its components, and show some of its characteristics through a discussion of a running example and experiments.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Reference33 articles.
1. Problog: A probabilistic prolog and its application in link discovery;De Raedt;In IJCAI,2007
2. Papandreou, G. , Zhu, T. , Chen, L.-C. , Gidaris, S. , Tompson, J. and Murphy, K. 2018. Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In Proceedings of the European Conference on Computer Vision (ECCV), 269–286.
3. A probabilistic extension of action language bc+;Lee;Theory and Practice of Logic Programming 18,2018
4. A computerized adaptive testing advancing the measurement of subjective well-being;Wu;Journal of Pacific Rim Psychology 13,2019
5. Acciaro, G. D. , D’Asaro, F. A. and Rossi, S. 2021. Predicting humans: A sensor-based architecture for real time intent recognition using problog. In Proceedings of the 22nd Workshop “From Objects to Agents”, Bologna, Italy, September 1–3, 2021, R. Calegari, G. Ciatto, E. Denti, A. Omicini and G. Sartor, Eds. CEUR Workshop Proceedings, vol. 2963. CEUR-WS.org, 72–82.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献