Optimization of bound disjunctive queries with constraints

Author:

GRECO GIANLUIGI,GRECO SERGIO,TRUBITSYNA IRINA,ZUMPANO ESTER

Abstract

This paper presents a technique for the optimization of bound queries over disjunctive deductive databases with constraints. The proposed approach is an extension of the well-known Magic-Set technique and is well-suited for being integrated in current bottom-up (stable) model inference engines. More specifically, it is based on the exploitation of binding propagation techniques which reduce the size of the data relevant to answer the query and, consequently, reduces both the complexity of computing a single model and the number of models to be considered. The motivation of this work stems from the observation that traditional binding propagation optimization techniques for bottom-up model generator systems, simulating the goal driven evaluation of top-down engines, are only suitable for positive (disjunctive) queries, while hard problems are expressed using unstratified negation. The main contribution of the paper consists in the extension of a previous technique, defined for positive disjunctive queries, to queries containing both disjunctive heads and constraints (a simple and expressive form of unstratified negation). As the usual way of expressing declaratively hard problems is based on the guess-and-check technique, where the guess part is expressed by means of disjunctive rules and the check part is expressed by means of constraints, the technique proposed here is highly relevant for the optimization of queries expressing hard problems. The value of the technique has been proved by several experiments.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On acceptance conditions in abstract argumentation frameworks;Information Sciences;2023-05

2. Consistent query answering with prioritized active integrity constraints;Proceedings of the 24th Symposium on International Database Engineering & Applications;2020-08-12

3. Enhancing Magic Sets with an Application to Ontological Reasoning;Theory and Practice of Logic Programming;2019-09

4. Simplified data posting in practice;Proceedings of the 23rd International Database Applications & Engineering Symposium on - IDEAS '19;2019

5. An Effective System for User Queries Assistance;Flexible Query Answering Systems;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3