Enabling reasoning with LegalRuleML

Author:

LAM HO-PUN,HASHMI MUSTAFA

Abstract

AbstractIn order to automate verification process, regulatory rules written in natural language need to be translated into a format that machines can understand. However, none of the existing formalisms can fully represent the elements that appear in legal norms. For instance, most of these formalisms do not provide features to capture the behavior of deontic effects, which is an important aspect in automated compliance checking. This paper presents an approach for transforming legal norms represented using legalruleml to a variant of modal defeasible logic (and vice versa) such that a legal statement represented using LegalRuleML can be transformed into a machine-readable format that can be understood and reasoned about depending upon the client's preferences.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference68 articles.

1. Wyner A. and Governatori G. 2013. A study on translating regulatory rules from natural language to defeasible logic. In Joint Proc. of the 7th International Rule Challenge, the Special Track on Human Language Technology and the 3rd RuleML Doctoral Consortium, P. Fodor , D. Roman , D. Anicic , A. Wyner , M. Palmirani and D. S. F. Lévy , Eds. CEUR Workshop Proceedings, Seatle, USA.

2. Wood G. 2014. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Accessed 12 March 2016. URL: http://gavwood.com/paper.pdf.

3. W3C RIF Working Group. 2005. RIF: Rule Interchange Format. URL: https://www.w3.org/standards/techs/rif. Accessed 7 Feb 2017.

4. Vojìr S. , Kliegr T. , Hazucha A. , Skrabal R. and Simunek M. 2013. Transforming association rules to business rules: EasyMiner meets drools. In Joint Proc. of the 7th International Rule Challenge, the Special Track on Human Language Technology and the 3rd RuleML Doctoral Consortium, P. Fodor , D. Roman , D. Anicic , A. Wyner , M. Palmirani , D. Sottara , and F. Lévy , Eds. CEUR Workshop Proceedings, Seattle, USA.

5. The OWL Services Coalition. 2006. OWL-S Specification. URL: http://www.ai.sri.com/daml/services/owl-s/. Accessed 7 Feb 2017.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3