Stepwise debugging of answer-set programs

Author:

OETSCH JOHANNES,PÜHRER JÖRGORCID,TOMPITS HANS

Abstract

AbstractWe introduce astepping methodologyfor answer-set programming (ASP) that allows for debugging answer-set programs and is based on the stepwise application of rules. Similar to debugging in imperative languages, where the behaviour of a program is observed during a step-by-step execution, stepping for ASP allows for observing the effects that rule applications have in the computation of an answer set. While the approach is inspired from debugging in imperative programming, it is conceptually different to stepping in other paradigms due to non-determinism and declarativity that are inherent to ASP. In particular, unlike statements in an imperative program that are executed following a strict control flow, there is no predetermined order in which to consider rules in ASP during a computation. In our approach, the user is free to decide which rule to consider active in the next step following his or her intuition. This way, one can focus on interesting parts of the debugging search space. Bugs are detected during stepping by revealing differences between the actual semantics of the program and the expectations of the user. As a solid formal basis for stepping, we develop a framework of computations for answer-set programs. For fully supporting different solver languages, we build our framework on an abstract ASP language that is sufficiently general to capture different solver languages. To this end, we make use of abstract constraints as an established abstraction for popular language constructs such as aggregates. Stepping has been implemented inSeaLion, an integrated development environment for ASP. We illustrate stepping using an example scenario and discuss the stepping plugin ofSeaLion. Moreover, we elaborate on methodological aspects and the embedding of stepping in the ASP development process.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable Answer-set Programming;Electronic Proceedings in Theoretical Computer Science;2023-09-12

2. Compliance checking on first-order knowledge with conflicting and compensatory norms: a comparison among currently available technologies;Artificial Intelligence and Law;2023-06-02

3. Witnesses for Answer Sets of Logic Programs;ACM Transactions on Computational Logic;2023-01-27

4. Contrastive Explanations for Answer-Set Programs;Logics in Artificial Intelligence;2023

5. Towards Causality-Based Conflict Resolution in Answer Set Programs;Logic Programming and Nonmonotonic Reasoning;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3