Linear tabling strategies and optimizations

Author:

ZHOU NENG-FA,SATO TAISUKE,SHEN YI-DONG

Abstract

AbstractRecently there has been a growing interest in research in tabling in the logic programming community because of its usefulness in a variety of application domains including program analysis, parsing, deductive databases, theorem proving, model checking, and logic-based probabilistic learning. The main idea of tabling is to memorize the answers to some subgoals and use the answers to resolve subsequent variant subgoals. Early resolution mechanisms proposed for tabling such as OLDT and SLG rely on suspension and resumption of subgoals to compute fixpoints. Recently, the iterative approach named linear tabling has received considerable attention because of its simplicity, ease of implementation, and good space efficiency. Linear tabling is a framework from which different methods can be derived on the basis of the strategies used in handling looping subgoals. One decision concerns when answers are consumed and returned. This article describes two strategies, namely,lazyandeagerstrategies, and compares them both qualitatively and quantitatively. The results indicate that, while the lazy strategy has good locality and is well suited for finding all solutions, the eager strategy is comparable in speed with the lazy strategy and is well suited for programs with cuts. Linear tabling relies on depth-first iterative deepening rather than suspension to compute fixpoints. Each cluster of interdependent subgoals as represented by a topmost looping subgoal is iteratively evaluated until no subgoal in it can produce any new answers. Naive re-evaluation of all looping subgoals, albeit simple, may be computationally unacceptable. In this article, we also introduce semi-naive optimization, an effective technique employed in bottom-up evaluation of logic programs to avoid redundant joins of answers, into linear tabling. We give the conditions for the technique to be safe (i.e., sound and complete) and propose an optimization technique calledearly answer promotionto enhance its effectiveness. Benchmarking in B-Prolog demonstrates that with this optimization linear tabling compares favorably well in speed with the state-of-the-art implementation of SLG.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel Logic Programming: A Sequel;Theory and Practice of Logic Programming;2022-03-28

2. Learning to rank in PRISM;International Journal of Approximate Reasoning;2018-02

3. Modeling and solving planning problems in tabled logic programming: Experience from the Cave Diving domain;Science of Computer Programming;2017-11

4. An Experimental Study of Influence of Modeling and Solving Techniques on Performance of a Tabled Logic Programming Planner;Fundamenta Informaticae;2016-12-24

5. Programming in Picat;Rule Technologies. Research, Tools, and Applications;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3