A structured alternative to Prolog with simple compositional semantics

Author:

PORTO ANTÓNIO

Abstract

AbstractProlog's very useful expressive power is not captured by traditional logic programming semantics, due mainly to the cut and goal and clause order. Several alternative semantics have been put forward, exposing operational details of the computation state. We propose instead to redesign Prolog around structured alternatives to the cut and clauses, keeping the expressive power and computation model but with a compositional denotational semantics over much simpler states—just variable bindings. This considerably eases reasoning about programs, by programmers and tools such as a partial evaluator, with safe unfolding of calls through predicate definitions. Anif-then-elseacross clauses replaces most uses of the cut, but the cut's full power is achieved by anuntilconstruct. Disjunction, conjunction anduntil, along with unification, are the primitive goal types with a compositional semantics yielding sequences of variable-binding solutions. This extends to programs via the usual technique of a least fixpoint construction. A simple interpreter for Prolog in the alternative language, and a definition ofuntilin Prolog, establish the identical expressive power of the two languages. Many useful control constructs are derivable from the primitives, and the semantic framework illuminates the discussion of alternative ones. The formalisation rests on a term language with variable abstraction as in the λ-calculus. A clause is an abstraction on the call arguments, a continuation, and the local variables. It can be inclusive or exclusive, expressing a local case bound to a continuation by either a disjunction or anif-then-else. Clauses are open definitions, composed (and closed) with simple functional application β-reduction). This paves the way for a simple account of flexible module composition mechanisms.Cube, a concrete language with the exposed principles, has been implemented on top of a Prolog engine and successfully used to build large real-world applications.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Choice Disjunctive Queries in Logic Programming;IEICE Transactions on Information and Systems;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3