Predicate Pairing for program verification

Author:

DE ANGELIS EMANUELE,FIORAVANTI FABIO,PETTOROSSI ALBERTOORCID,PROIETTI MAURIZIOORCID

Abstract

AbstractIt is well-known that the verification of partial correctness properties of imperative programs can be reduced to the satisfiability problem for constrained Horn clauses (CHCs). However, state-of-the-art solvers for constrained Horn clauses (or CHC solvers) based onpredicate abstractionare sometimes unable to verify satisfiability because they look for models that are definable in a given class 𝓐 of constraints, called 𝓐-definable models. We introduce a transformation technique, calledPredicate Pairing, which is able, in many interesting cases, to transform a set of clauses into an equisatisfiable set whose satisfiability can be proved by finding an 𝓐-definable model, and hence can be effectively verified by a state-of-the-art CHC solver. In particular, we prove that, under very general conditions on 𝓐, the unfold/fold transformation rules preserve the existence of an 𝓐-definable model, that is, if the original clauses have an 𝓐-definable model, then the transformed clauses have an 𝓐-definable model. The converse does not hold in general, and we provide suitable conditions under which the transformed clauses have an 𝓐-definable modelif and only ifthe original ones have an 𝓐-definable model. Then, we present a strategy, called Predicate Pairing, which guides the application of the transformation rules with the objective of deriving a set of clauses whose satisfiability problem can be solved by looking for 𝓐-definable models. The Predicate Pairing (PP) strategy introduces a new predicate defined by the conjunction of two predicates occurring in the original set of clauses, together with a conjunction of constraints. We will show through some examples that an 𝓐-definable model may exist for the new predicate even if it does not exist for its defining atomic conjuncts. We will also present some case studies showing that Predicate Pairing plays a crucial role in the verification ofrelational properties of programs, that is, properties relating two programs (such as program equivalence) or two executions of the same program (such as non-interference). Finally, we perform an experimental evaluation of the proposed techniques to assess the effectiveness of Predicate Pairing in increasing the power of CHC solving.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3