Refactoring the Whitby Intelligent Tutoring System for Clean Architecture

Author:

BROWN PAUL S.ORCID,DIMITROVA VANIA,HART GLEN,COHN ANTHONY G.,MOURA PAULO

Abstract

AbstractWhitby is the server-side of an Intelligent Tutoring System application for learning System-Theoretic Process Analysis (STPA), a methodology used to ensure the safety of anything that can be represented with a systems model. The underlying logic driving the reasoning behind Whitby is Situation Calculus, which is a many-sorted logic with situation, action, and object sorts. The Situation Calculus is applied to Ontology Authoring and Contingent Scaffolding: the primary activities within Whitby. Thus many fluents and actions are aggregated in Whitby from these two sub-applications and from Whitby itself, but all are available through a common situation query interface that does not depend upon any of the fluents or actions. Each STPA project in Whitby is a single situation term, which is queried for fluents that include the ontology, and to determine what pedagogical interventions to offer. Initially Whitby was written in Prolog using a module system. In the interest of a cleaner architecture and implementation with improved code reuse and extensibility, the initial application was refactored into Logtalk. This refactoring includes decoupling the Situation Calculus reasoner, Ontology Authoring framework, and Contingent Scaffolding framework into third-party libraries that can be reused in other applications. This extraction was achieved by inverting dependencies via Logtalk protocols and categories, which are reusable interfaces and components that provide functionally cohesive sets of predicate declarations and predicate definitions. In this paper the architectures of two iterations of Whitby are evaluated with respect to the motivations behind the refactor: clean architecture enabling code reuse and extensibility.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Approach to Clean Architecture for Microservices Using Python;2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3