Abstract
AbstractFirst-order resolution has been used for type inference for many years, including in Hindley-Milner type inference, type-classes, and constrained data types. Dependent types are a new trend in functional languages. In this paper, we show that proof-relevant first-order resolution can play an important role in automating type inference and term synthesis for dependently typed languages. We propose a calculus that translates type inference and term synthesis problems in a dependently typed language to a logic program and a goal in the proof-relevant first-order Horn clause logic. The computed answer substitution and proof term then provide a solution to the given type inference and term synthesis problem. We prove the decidability and soundness of our method.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献