Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: a randomised controlled trial in Beninese children

Author:

Chimhashu Tsitsi,Malan Linda,Baumgartner Jeannine,van Jaarsveld Paul J.,Galetti Valeria,Moretti Diego,Smuts Cornelius M.,Zimmermann Michael B.

Abstract

AbstractZn status may affect fatty acid (FA) metabolism because it acts as a cofactor in FA desaturase and elongase enzymes. Zn supplementation affects the FA desaturases of Zn-deficient rats, but whether this occurs in humans is unclear. We evaluated the associations between baseline plasma Zn (PZn) concentration and plasma total phospholipid FA composition, as well as the effect of daily consumption of Zn-fortified water on FA status in Beninese children. A 20-week, double-blind randomised controlled trial was conducted in 186 school age children. The children were randomly assigned to receive a daily portion of Zn-fortified, filtered water delivering on average 2·8 mg Zn/d or non-fortified filtered water. Plasma total phospholipid FA composition was determined using capillary GLC and PZn concentrations by atomic absorption spectrometry. At baseline, PZn correlated positively with dihomo-γ-linolenic acid (DGLA, r 0·182; P=0·024) and the DGLA:linoleic acid (LA) ratio (r 0·293; P<0·000), and negatively with LA (r −0·211; P=0·009) and the arachidonic acid:DGLA ratio (r −0·170; P=0·036). With the intervention, Zn fortification increased nervonic acid (B: 0·109; 95 % CI 0·001, 0·218) in all children (n 186) and more so in children who were Zn-deficient (n 60) at baseline (B: 0·230; 95 % CI 0·023, 0·488). In conclusion, in this study, Zn-fortified filtered water prevented the reduction of nervonic acid composition in the plasma total phospholipids of children, and this effect was stronger in Zn-deficient children. Thus, Zn status may play an important role in FA desaturation and/or elongation.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3