Feeding a thermally oxidised fat inhibits atherosclerotic plaque formation in the aortic root of LDL receptor-deficient mice

Author:

Kämmerer Ines,Ringseis Robert,Eder Klaus

Abstract

Activators of PPARα have been demonstrated to inhibit atherosclerosis development due to lipid lowering in plasma and direct protective effects on the vasculature. Because dietary oxidised fats (OF) have strong PPARα-activating and lipid-lowering properties, we hypothesised that dietary OF has also an inhibitory influence on atherosclerosis development. To verify our hypothesis, we investigated the effect of feeding diets containing an OF (a 92 : 8 mixture of heated (170°C, 48 h) hydrogenated palm fat and fresh sunflower oil) compared with a fresh fat (fresh hydrogenated palm fat) on the development of atherosclerotic lesions in LDL receptor-deficient (LDLR− / − ) mice. We observed that a dietary OF caused a strong up-regulation of PPARα-regulated genes in the liver and a marked reduction in plasma concentrations of cholesterol and TAG (P < 0·05). Cross-sectional lesion area and the lipids and collagen levels in the aortic root were approximately 40–50 % lower in mice fed diets containing OF than in those fed diets containing fresh fat (P < 0·05). Immunohistochemical analysis of aortic root sections revealed an about 8-fold increased expression of PPARα and a markedly reduced expression of the proinflammatory vascular cell adhesion molecule-1 and smooth muscle cell (SMC)-specific marker α-actin in LDLR− / −  mice fed OF (P < 0·05). We postulate that OF exert anti-atherogenic effects by activation of PPARα both in the liver, which contributes to lipid lowering in plasma, and in the vasculature, which inhibits pro-atherogenic events such as monocyte recruitment and SMC proliferation and migration.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3