The effect of exogenous cholesterol and lipid-modulating agents on enterocytic amyloid-β abundance

Author:

Pallebage-Gamarallage Menuka M.,Galloway Susan,Johnsen Russell,Jian Le,Dhaliwal Satvinder,Mamo John C. L.

Abstract

Dietary cholesterol may influence Alzheimer's disease risk, because it regulates the synthesis of amyloid-β. It was recently demonstrated in enterocytes of wild-type mice that intracellular amyloid-β expression is enhanced in response to a high-fat diet made up of SFA and cholesterol. Intestinally derived amyloid-β may be associated with postprandial lipoproteins in response to dietary fats and could be a key regulator in chylomicron metabolism. The present study was designed to investigate the role of cholesterol in modulating amyloid-β abundance in enterocytes. Wild-type mice were fed a low-fat diet supplemented with 2 % (w/w) cholesterol. The effects of cholesterol absorption inhibition and cholesterol biosynthesis inhibition utilising ezetimibe and atorvastatin, respectively, were also studied. Quantitative immunohistochemistry was utilised to determine enterocytic amyloid-β homeostasis. We found that enterocytic amyloid-β concentration was significantly attenuated in mice fed the 2 % (w/w) cholesterol diet. However, blocking cholesterol absorption reversed the cholesterol-feeding effect. Consistent with a suppressive effect of cholesterol on enterocytic amyloid-β abundance, atorvastatin, an inhibitor of cholesterol biosynthesis, enhanced amyloid-β. However, providing exogenous cholesterol abolished the atorvastatin-induced effect. In contrast to the suppression of enterocytic amyloid-β by dietary cholesterol, mice fed a diet enriched in SFA had markedly greater abundance. Collectively, the findings suggest that exogenous and endogenous cholesterol reduce amyloid-β concentration in enterocytes by suppressing production, or enhancing secretion associated with postprandial lipoproteins. Intestinally derived amyloid-β will contribute to the pool of plasma protein and may influence cerebral amyloid homeostasis by altering the bi-directional transfer across the blood–brain barrier.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3